第655章 【神经网络深度学习】

一小时后,方鸿再次来到了量化资本总部。

陈宇的助理前来接待他,领着他向着招待室走去,并说道:“方先生,陈总正在技术部开会,您稍等,我去知会他一声。”

方鸿如是说道:“不用,直接带我去他的会议室,我去旁听一下。”

闻言,陈宇的助理拿出手机给他发了个信息,很快陈宇就回消息,这位助理转而看向方鸿微笑道:“方先生,您这边请。”

不一会儿,方鸿便来到了陈宇所在的会议室,在场有三十多号人,看到走进来一个陌生的青年,大家都颇为好奇的打量了一下。

他们发现方鸿跟自己老板陈宇的年龄差不多,但不同的是,他们从方鸿身上感受到了一种在这个年龄阶段所没有的上位者气场,这让大家意识到这个陌生青年不是一般人。

此刻,陈宇看到方鸿与之相视点头致意,后者微微一笑便在会议室里默默地找了个位置坐下旁听。

陈宇收回目光,转而环视一众与会者继续说道:“……对于人工智能的基本实现思路,机器学习的过程,简单的说就是电脑到底是如何自我学习的。”

“因为计算机的一切运算,其基础都是数学运算,所以任何机器学习的思路,归根结底就是把一个实际问题转化为数学问题。为了让计算机能够预测或者识别什么东西,就需要先构造一个数学函数,这个数学函数就叫预测函数。”

一般人可能很难想象,量化资本作为一家多元金融公司,在大多数股民眼里甚至就是一家非银金融投资公司,掌门人也是做投资交易的,却在公司里谈论这些内容。

不过方鸿是很淡定,这其实很正常,华尔街就是汇集了一群顶尖的数学家、物理学家。

此刻,陈宇转而看向会议屏幕道:“比如预测一个吃饱饭的函数,就可以描述成[吃饱=n碗饭],这个预测计算到底准不准?一个人吃几碗饭和吃饱之间的关系有是什么?是吃一碗还是三碗才能吃的饱?”

“这就需要实际去试一下,如果预测是两碗饭吃饱,但实际要吃三碗饭才饱,其中一碗的误差就是损失,描述这个损失的函数即[3-n=1],这就是损失函数。”

“机器学习就是通过不断尝试让这个误差达到最小的过程,寻找损失最小值的方法通常是梯度下降,一旦我们找到了最小误差,就会发现当[n=3]的时候误差最小,也就是机器学习找到了真实的规律,就成功解决问题了。”

陈宇再度看向众人道:“所以,机器学习就是在寻找数据的规律,大部分时候,它的本质就是把数据投射到坐标系里,然后用计算机通过数学方法画一条线区分或者模拟这些数据的过程。”

“不同的机器学习方法,就是在使用不同的数学模型来投射数据和画线,从上世纪到现在,不同的流派找到了不同的方法,擅长于解决不同的问题,影响比较巨大的有这么几种:线性回归和逻辑回归、k近邻、决策树、支持向量机、贝叶斯分类以及感知机等。”